Fingering of Chemical Fronts in Porous Media
نویسندگان
چکیده
منابع مشابه
Convective instabilities of chemical fronts in close-packed porous media
Spatiotemporal pattern formation in the autocatalytic chlorite–tetrathionate reaction is studied experimentally in porous media where heterogeneities are introduced as glass beads packed in a monolayer. From initially vertical planar chemical fronts in a vertical slab, asymmetric convective structures with stable geometry evolve which propagate horizontally with constant speed. The single conve...
متن کاملHysteresis models and gravity fingering in porous media
We study flow problems in unsaturated porous media. Our main interest is the gravity driven penetration of a dry material, a situation in which fingering effects can be observed experimentally and numerically. The flow is described by either a Richards or a two-phase model. The important modelling aspect regards the capillary pressure relation which can include static hysteresis and dynamic cor...
متن کاملQuenching and propagation of combustion fronts in porous media
In this short note we study the model of subsonic detonation introduced by Sivashinsky. The model is described by the system of reaction-diffusion equations involving temperature, pressure and concentration of deficient reactant. It is shown that initial data with small support lead to quenching (decay of solution). In contrast, initial data with support large enough lead to propagation with fi...
متن کاملDrying in porous media with gravity-stabilized fronts: experimental results.
In a recent paper [Yiotis et al., Phys. Rev. E 85, 046308 (2012)] we developed a model for the drying of porous media in the presence of gravity. It incorporated effects of corner film flow, internal and external mass transfer, and the effect of gravity. Analytical results were derived when gravity opposes drying and hence leads to a stable percolation drying front. In this paper, we test the t...
متن کاملFingering from Ionization Fronts in Plasmas
In this paper we describe the formation of fingers from ionization fronts for a hydrodynamic plasma model. The fingers result from a balance between the destabilizing effect of impact ionization and the stabilizing effect of electron diffusion on ionization fronts. We show that electron diffusion acts as an effective surface tension on moving fronts and estimate analytically the size of the fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2001
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.87.054502